• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Adjusted Maximum Likelihood Inference for Spatial Models with Fixed Effects
Seminar

Adjusted Maximum Likelihood Inference for Spatial Models with Fixed Effects


  • Series
    Econometrics Seminars and Workshop Series
  • Speaker(s)
    Federico Martellosio (University of Surrey, United Kingdom)
  • Field
    Econometrics
  • Location
    UvA - E-building, Roetersstraat 11, Room E5.22
    Amsterdam
  • Date and time

    November 09, 2018
    16:00 - 17:15

One simple, and often very effective, way to attenuate the impact of nuisance parameters on maximum likelihood estimation of a parameter of interest is to recenter the profile score for that parameter. We apply this general principle to the quasi-maximum likelihood estimator (QMLE) of the autoregressive parameter in a spatial panel model with individual and time fixed effects. Compared to the likelihood procedures currently available for this model, our adjusted QMLE does not require any conditions on the spatial weights matrix, and has better finite sample properties, particularly when the number of covariates is large. Saddlepoint confidence intervals for the spatial autoregressive parameter based on the adjusted QMLE are proposed. In simulation, they perform very well against other higher-order methods.