• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Liquid Constrained in California: Estimating the Potential Gains from Water Markets
Seminar

Liquid Constrained in California: Estimating the Potential Gains from Water Markets


  • Series
  • Speaker(s)
    Nick Hagerty (University of California, Berkeley, United States)
  • Field
    Spatial Economics
  • Location
    Tinbergen Institute, room 1.01
    Amsterdam
  • Date and time

    March 28, 2019
    12:15 - 13:15

Water markets may help societies adapt to rising water scarcity and variability, but their setup costs can be substantial and their benefits uncertain. I estimate the gains available from strengthening the wholesale surface water market in California, where conveyance infrastructure is well-developed yet transaction volume remains low. To do so, I develop a new empirical framework to analyze welfare in water markets that uses transactions data. First, I recover marginal valuations of water in the presence of unobserved transaction costs, by using particular price comparisons to find the incidence of both known and unknown cost determinants. Second, I estimate demand using yearly water endowments, which have rich variation driven by weather and amplified by historical rules. Then, I combine this demand model with a hydrological network model to simulate counterfactual outcomes. I find that efficient trading across regions and sectors would achieve benefits of only $86 to $278 million per year, without accounting for any environmental costs. These results suggest that promoting large-scale water markets may not achieve large gains without also reforming the policies and institutions that govern local water allocation.