• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Sustainable Finance
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Info-Metrics for Modeling and Inference
Seminar

Info-Metrics for Modeling and Inference


  • Series
    Seminars Econometric Institute
  • Speaker(s)
    Amos Golan (American University, United States)
  • Field
    Econometrics
  • Location
    Erasmus University, Polak Building, Room 1-10
    Rotterdam
  • Date and time

    May 13, 2019
    16:00 - 17:00

Abstract:

Our classical statistical arsenal for extracting truth from data often fails to produce correct predictions. Uncertainty, blurry evidence and multiple possible solutions may trip up even the best interrogator. Info-metrics – the science of modeling, reasoning, and drawing inferences under conditions of noisy and insufficient information – provides a consistent and efficient framework for constructing models and theories with minimal assumptions. It reveals the simplest solution, model or story, that is hidden in the observed information. Technically, info-metrics is at the intersection of information-theory and statistical inference. It combines the tools and principles of information theory, within a constrained optimization framework.

My talk will be based on my new book ‘Foundations of Info-Metrics: Modeling, Inference, and Imperfect Information,’ info-metrics.org/ in which I develop and examine the theoretical underpinning of info-metrics and provide extensive interdisciplinary applications. In this talk I will discuss the basic ideas via a number of graphical representations of the model and theory, and will then present a number of interdisciplinary real-world examples of using that framework for modeling and inference. These examples include finance, network aggregation, predicting election, and more.