• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Count and Duration Time Series with Equal Conditional Stochastic and Mean Orders
Seminar

Count and Duration Time Series with Equal Conditional Stochastic and Mean Orders


  • Series
    Econometrics Seminars and Workshop Series
  • Speaker(s)
    Christian Francq (University of Lille, CREST)
  • Field
    Econometrics
  • Location
    Vrije Universiteit Amsterdam (De Boelelaan 1105), Room HG-08A-20
    Amsterdam
  • Date and time

    October 18, 2019
    16:00 - 17:15

We consider a positive-valued time series whose conditional distribution has a time-varying mean, which may depend on exogenous variables. The main applications concern count or duration data. Under a contraction condition on the mean function, it is shown that stationarity and ergodicity hold when the mean and stochastic orders of the conditional distribution are the same. The latter condition holds for the exponential family parametrized by the mean, but also for many other distributions. We also provide conditions for the existence of marginal moments and for the geometric decay of the beta-mixing coefficients. We give conditions for consistency and asymptotic normality of several estimators of the conditional mean parameters which do not require fully specifying the conditional distribution. We compare Quasi-Maximum Likelihood Estimators (QMLEs) (in particuler the Poisson QMLE and the Exponential QMLE) and weighted least squares estimators. Simulation experiments and illustrations on series of stock market volumes and of greenhouse gas concentrations show that the multiplicative-error form of usual duration models deserves to be relaxed, as allowed in our approach.

Joint with Abdelhakim Aknouche.