• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievements across Countries
Seminar

Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievements across Countries


  • Location
    Online
  • Date and time

    June 07, 2021
    16:00 - 17:15

Abstract: It is often desired to rank different populations according to the value of some feature of each population. For example, it may be desired to rank neighborhoods according to some measure of intergenerational mobility or countries according to some measure of academic achievement. These rankings are invariably computed using estimates rather than the true values of these features. As a result, there may be considerable uncertainty concerning the rank of each population. In this paper, we consider the problem of accounting for such uncertainty by constructing confidence sets for the rank of each population. We consider both the problem of constructing marginal confidence sets for the rank of a particular population as well as simultaneous confidence sets for the ranks of all populations. We show how to construct such confidence sets under weak assumptions. An important feature of all of our constructions is that they remain computationally feasible even when the number of populations is very large. We apply our theoretical results to re-examine the rankings of both neighborhoods in the United States in terms of intergenerational mobility and developed countries in terms of academic achievement. The conclusions about which countries do best and worst at reading, math, and science are fairly robust to accounting for uncertainty. The confidence sets for the ranking of the 50 most populous commuting zones by mobility are also found to be small. However, the mobility rankings become much less informative if one includes all commuting zones, if one considers neighborhoods at a more granular level (counties, Census tracts), or if one uses movers across areas to address concerns about selection. Joint paper with Joseph P. Romano (Stanford University), Azeem M. Shaikh (University of Chicago), and Daniel Wilhelm (University College London).

Paper: https://www.dropbox.com/s/ff98232h8zvrmi8/paper.pdf?dl=0

• If you want to attend this online seminar, you need to register here. You will then receive the details of the zoom session by email.