• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Time series forecasting with local linear forests
Research Master Pre-Defense

Time series forecasting with local linear forests


  • Series
    Research Master Defense
  • Speaker
    Aishameriane Schmidt
  • Location
    Zoom
    Online
  • Date and time

    March 17, 2022
    09:00 - 10:00

I propose to combine the local linear forest (LLF) from Friedberg et al. (2020), which is a tree-based machine learning method, with the Shapley Additive explanation (SHAP) method from Lundberg and Lee (2017) to forecast time series. I designed a series of Monte Carlo experiments with different GDP specifications to compare the predictions generated by the local linear forest with predictions from the traditional implementation of the random forest. In simulated iid data, the LLF predictions are superior than RF predictions in the presence of only linear signals. As an empirical application, I nowcast the Dutch GDP, comparing forecasts of the LLF with random forests and eight other benchmarks. RF nowcasts and forecasts for 1 and 2 quarters ahead have lower error than competing models when averaging all sample periods. LLF predictions had lower forecast error in the period of the European debt crisis.