• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Simulation-Based Estimation with many Auxiliary Statistics Applied to Long-Run Dynamic Analysis
Seminar

Simulation-Based Estimation with many Auxiliary Statistics Applied to Long-Run Dynamic Analysis


  • Series
    Econometrics Seminars and Workshop Series
  • Speaker(s)
    Bertille Antoine (Simon Fraser University, Canada)
  • Field
    Econometrics
  • Location
    University of Amsterdam and online (hybrid seminar), room E5.22
    Amsterdam
  • Date and time

    April 22, 2022
    12:30 - 13:30

Abstract:
The existing asymptotic theory for estimators obtained by simulated minimum distance does not cover situations in which the number of components of the auxiliary statistics (or number of matched moments) is large - typically larger than the sample size. We establish the consistency of the simulated minimum distance estimator in this situation and derive its asymptotic distribution. Our estimator is easy to implement and allows us to exploit all the informational content of a large number of auxiliary statistics without having to, (i) know these functions explicitly, or (ii) choose a priori which functions are the most informative. This allows us to exploit, among other things, long-run information. We illustrate the implementation of the proposed method through Monte-Carlo simulation experiments based on small- and medium-scale New Keynesian models. These examples illustrate how to exploit information from matching a large number of impulse responses including at long-run horizons. Joint paper with Wenqian Sun (Simon Fraser University).