• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Sustainable Finance
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Differentially Private Inference via Noisy Optimization
Seminar

Differentially Private Inference via Noisy Optimization


  • Location
    Erasmus University Rotterdam, E building, room ET-14
    Rotterdam
  • Date and time

    March 21, 2024
    12:00 - 13:00

Abstract
We propose a general optimization-based framework for computing differentially private M-estimators and a new method for constructing differentially private confidence regions. First, we show that robust statistics can be used in conjunction with noisy gradient descent or noisy Newton methods in order to obtain optimal private estimators with global linear or quadratic convergence, respectively. We establish local and global convergence guarantees, under both local strong convexity and self-concordance, showing that our private estimators converge with high probability to a small neighborhood of the nonprivate M-estimators. Second, we tackle the problem of parametric inference by constructing differentially private estimators of the asymptotic variance of our private M-estimators. This naturally leads to approximate pivotal statistics for constructing confidence regions and conducting hypothesis testing. We demonstrate the effectiveness of a bias correction that leads to enhanced small-sample empirical performance in simulations. This is joint work with Casey Bradshaw and Po-Ling Loh