• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Friedrich, M. and Lin, Y. (2024). Sieve bootstrap inference for linear time-varying coefficient models Journal of Econometrics, 239(1):1--29.


  • Journal
    Journal of Econometrics

We propose a sieve bootstrap framework to conduct pointwise and simultaneous inference for time-varying coefficient regression models based on a local linear estimator. The asymptotic validity of the sieve bootstrap in the presence of autocorrelation is established. The bootstrap automatically produces a consistent estimate of nuisance parameters, both at the interior and boundary points. In addition, we develop a bootstrap-based test for parameter constancy and examine its asymptotic properties. An extensive simulation study demonstrates a good finite sample performance of our methods. The proposed methods are applied to assess the price development of CO2 certificates in the European Emissions Trading System. We find evidence of time variation in the relationship between allowance prices and their fundamental price drivers. The time variation might offer an explanation for previous contradicting findings using linear regression models with constant coefficients.